1983_ Prep. - ACS (DIV. Pet. Chem 1 _ 2865) P1310-14

SYMPOSIUM ON ROLE OF SOLID STATE CHEMISTRY IN CATALYSIS PRESENTED BEFORE THE DIVISION OF PETROLEUM CHEMISTRY, INC.

AMERICAN CHEMICAL SOCIETY
WASHINGTON, D. C. MEETING, AUGUST 28-SEPTEMBER 2, 1983

COMPARISON OF BULK AND SUPPORTED TUNGSTEN OXIDE

Ву

S. Soled, L. Murrell, I. Wachs and G. McVicker
Exxon Research and Engineering Company, Corporate Research-Science Laboratories
P. O. Box 45, Linden, New Jersey 07036

INTRODUCTION

Interactions with a support can dramatically change the properties of metals or metal oxides. The strong metal support interaction (SMSI) between Group VIII noble metals and certain transition metal supports decreases the $\rm H_2$ and CO chemisorption abilities of the metals (1). Chromium (VI) oxide supported on silica is stable at temperatures at which bulk chromic anhydride (CrO₃) decomposes (2). Iron oxide on silica does not completely reduce under conditions at which bulk $\rm Fe_2O_3$ rapidly converts to metallic iron (3). Recent evidence points to a strong surface complex between $\rm WO_3$ and $\rm \gamma$ -A1₂O₃ which influences the chemical and physical properties of both $\rm WO_3$ and $\rm \gamma$ -A1₂O₃ (4, 5). The interaction inhibits both the conversion of $\rm \gamma$ -A1₂O₃ to $\rm \alpha$ -A1₂O₃ (5) and the reduction of tungsten oxide to tungsten metal (6). In the current study, thermal gravimetry (TG) provides a quantitative determination of the reduction resistance of $\rm WO_3/\gamma$ -A1₂O₃. In-situ X-ray photoelectron spectroscopy (ESCA) suggests differences in the reduction mechanism of supported versus bulk $\rm WO_3$.

EXPERIMENTAL

Samples of nominal 4, 6, 10 and 25 wt % tungsten oxide on γ -Al $_2$ O $_3$ (Engelhard, Inc., reforming grade, 220 m 2 /gm, 325 mesh) were prepared by the incipient wetness impregnation method by adding an aqueous solution of ammonium meta-tungstate to the alumina powder, drying at 393°K and calcining in air at 773°K for 16 hrs.

TG/DSC measurements were conducted on a Mettler TA-2000C. Powder X-ray diffraction determined phase identity. For the reduction experiments, samples of WO_3/γ -Al $_2O_3$ were heated to 1243°K (at 10°/min) in He and then held isothermally until constant weight was obtained. This precalcination step minimizes overlapping reduction and dehydroxylation weight losses. After cooling to room temperature, H $_2$ was introduced, and the samples were reheated to a temperature between 873 and 1173°K (at 10°/min) and held isothermally for two hours. The sensitivity and stability of the thermobalance (0.05 mg) establishes a detection limit of between 1 to 2% on the degree of WO $_3$ reduction to W, or alternatively, around 10% on the amount of detectable W $^{+5}$. Visual observation of slight gray discolorations indicate trace levels of reduction.

In-situ X-ray photoelectron spectra (XPS or ESCA) were collected on a modified Leybold Heraeus LHS-10 electron spectrometer. A moveable stainless steel block allows transfer in vacuum of a sample from a reactor chamber to the ESCA chamber. The intensities and binding energies of the tungsten $4f_{5/2}$, 7/2 signals (A1K α radiation) were monitored and referenced to the A12p peak at 74.5 eV. The 10% WO₃/ γ -A1₂O₃ powder sample was calcined in air at 1223°K for 16 hrs and then pressed (at 30Mpa) onto a gold screen, which in turn was mounted on a moveable stainless steel block. The WO₃/A1₂O₃ was briefly calcined in-situ at 773°K to clean the surface prior to analysis.

sa

m

10

re

co

OX.

id€

sit tal

 $st\epsilon$

eV per

For the reduction experiments, the samples were heated for five minutes at the desired temperature in flowing $\rm H_2$ (25 cc/min), cooled to 523°K in $\rm H_2$, evacuated and then transferred into the ESCA chamber. Note that the 1173°K sample (f in Figure 1) was reduced for 2 hours.

We also examined by ESCA the $10\%~WO_3/A1_2O_3$ samples that were previously reduced in the TG experiments (at 1073, 1123 and 1173°K in Table I) to determine the extent of surface reduction. Heating these samples briefly to 873°K in flowing H_2 removes the oxygen that is adsorbed on the tungsten surfaces in transporting the samples from the TG apparatus to the ESCA system.

RESULTS

 γ -A1 $_2$ O $_3$, on programmed heating (10°/min) to 1373°K in the presence of oxygen, continuously lost weight as a result of dehydroxylation: the percent weight loss between 473 and 1373°C

equaled about 3.5%. In addition, a weak exotherm with an onset near 1323°K occurred during the transition to $\alpha\text{-A1}_2\mathrm{O}_3$. A 10% WO $_3$ on $\mathcal{T}\text{-A1}_2\mathrm{O}_3$ sample showed very different behavior. When this sample was heated in an oxygen atmosphere, a larger exotherm occurred at 1323°K as some of the A1 $_2\mathrm{O}_3$ and WO $_3$ reacted to form A1 $_2(\mathrm{WO}_4)_3$. X-Ray diffraction confirmed the phase identification. The remaining WO $_3/\mathcal{T}\text{-A1}_2\mathrm{O}_3$ transforms to WO $_3/\theta\text{-A1}_2\mathrm{O}_3$: only a trace of $\alpha\text{-A1}_2\mathrm{O}_3$ appeared. Thus, the surface WO $_3$ on A1 $_2\mathrm{O}_3$ complex inhibited the transition to $\alpha\text{-A1}_2\mathrm{O}_3$.

TABLE I
REDUCTION BEHAVIOR OF TUNGSTEN OXIDE ON ALUMINA

After 1173°K H ₂ Treatment	(2 hr)				
% wo ₃	4	6	10	25	100
% Reduction of $WO_3 \longrightarrow W$	-0-	2.5%	49% ^a	$85\%^{\mathbf{b}}$	black
Color after treatment	white	lt. gray	black	black	black
After 873°K H ₂ Treatment (2 hr)				
% wo ₃	4	6	10	25	100
% Reduction of WO ₃ →W	-0-	-0-	-O -	~22% ^a	-100-
Color after treatment	white	white	white	black	black
10% WO /v-A1 O (2 hr at	reduction	n temperatu	ro)		

Temperature (°K)	% Reduction WO ₃ -> W	Color
873	-0-	white
973	-0-	white
1073	-0-c	tint of gray-slight discoloration
1123	17% ^a	gray
1173	$49\%^{\mathbf{a}}$	black

- a. Reduction still continuing after 2 hr.
- b. Some $\alpha\text{-Al}_2\mathrm{O}_3$ present.

ro-

3

on d

ty

 O_3

es

c. Detection limit of 1 to 2 %.

TG and ESCA experiments indicated the resistance of WO_3/γ -Al $_2O_3$ to reduction. Table I shows the degree of reduction (expressed as percent WO_3 reduced to W°) of the different loaded samples after two hour treatments at 873° or 1173°K. The 10% sample was tested at several intermediate temperatures as well. The retardation of WO_3 reduction depends on loading levels. With low loading levels, little or no reduction occurs. The 10% WO_3/Al_2O_3 showed the first trace of reduction at 1073°K. Even though no weight loss could be detected by TG, the slight greyish discoloration after the heat treatment indicated some reduction had occurred. In contrast, bulk WO_3 completely reduced in these experiments at 873°K after 2 hours. For the 1123°K and 1173°K reductions of 10% WO_3/Al_2O_3 , X-ray diffraction indicated that the reduced tungsten sintered.

Figure 1 shows the ESCA W 4f signal for the 10% WO $_3/\gamma$ -Al $_2$ O $_3$ sample calcined in-situ in oxygen at 773°K. The binding energy of the W $4f_{7/2}$ peak measures 36.0 eV, indicative of W⁺⁶ and identical to the value recently reported by Salvati et al. (7). For the samples partially reduced insitu (Figure 1b-1e), a new tungsten peak at a binding energy of 31.0 eV appeared: indicative of metallic tungsten (W°) (8). Increasing the extent of reduction increased the intensity of the ESCA tungsten peak at 31.0 eV (W⁺⁶). After two hours at 1173°K (Figure 1f), the ESCA tungsten peak at 36.0 eV (W⁺⁶) disappeared. The total intensity of the ESCA 4f signal also decreased about 70%. Independent X-ray diffraction examinations showed the presence of large particles of tungsten metal.

Deconvolution of the

$$^{
m W}_{
m 4f}_{
m 5/2,7/2}$$

ESCA spectra in Figure 1 shows the presence of only W^{+6} and W° : intermediate tungsten oxidation states are not detected on the partially reduced samples (9). This behavior sharply contrasts with that of bulk WO_3 , which passes through ESCA-observable intermediate oxidation states of +5, +4 and +2 (10, 11, 12).

The $10\%~{\rm WO_3/A1_2O_3}$ TG sample previously reduced at $1073^{\circ}{\rm K}$ did not contain a measurable amount of surface W° (<5%), whereas the TG samples reduced at 1123 and 1173°K did contain significant amounts of surface W°. These observations agree with the TG results. A small but measureable amount of W°, however, formed during the in-situ ESCA reduction study at $1073^{\circ}{\rm K}$ (Figure 1b). The slightly faster rate of reduction observed in the in-situ ESCA studies probably results from the higher hydrogen pressure used in the ESCA experiments (3 atmospheres) than in the TG experiments (1 atmosphere).

DISCUSSION

The strong interaction of WO₃ on a γ -Al₂O₃ surface modifies the behavior of both the tungsten oxide and the alumina. γ -Al₂O₃ itself will transform from a series of closely related transitional alumina phases with a defect spinel structure, containing both tetrahedral and octahedral aluminum ions, to α -Al₂O₃, a corundum structure containing only octahedral aluminum ions (19). The γ to α -Al₂O₃ transformation occurs following the condensation of all the surface hydroxyl groups to form H₂O. Our TG and X-ray studies indicate an inhibiting of the γ to α -Al₂O₃ phase transformation in WO₃/ γ -Al₂O₃ samples. The presumed bonding of WO₃ with the hydroxyl surface of γ -Al₂O₃ blocks the transformation to α -Al₂O₃. At sufficiently high temperatures and WO₃ concentrations (\sim 1323°, 10% WO₃), some of the surface tungsten oxide reacts with alumina forming Al₂(WO₄)₃.

forming $A1_2(WO_4)_3$. The reduction behavior of tungsten oxide supported on γ - $A1_2O_3$ also differs from that of bulk WO_3 . Bulk WO_3 crystallizes in a distorted ReO_3 -type structure, consisting of a three-dimensional corner shared array of linked octahedra (13). The reduction of bulk WO_3 proceeds through the formation of shear phases WO_{3-x} in which octahedra along certain planes cooperatively displace to share edges while maintaining the tungsten, in an octahedral coordination. On further reduction, a discrete WO_2 (distorted rutile) phase, also containing octahedral tungsten exists and can form its family of shear structures on reduction. Further reduction proceeds through WO_3 to tungsten metal. During the reduction of WO_3 , ESCA observes several intermediate oxidation states (+5, +4 and +2).

The reduction of $WO_3/\gamma A1_2O_3$ depends strongly on tungsten oxide loading level. Low concentrations (4 or 6 wt %) of WO_3 do not significantly reduce at temperatures hundreds of degrees above those at which bulk WO_3 completely reduces. At intermediate concentrations (10 wt %), WO_3 reduces slowly and partially. At high concentrations (25 wt %) some of the supported WO_3 behaves like bulk WO_3 . The isolated tetrahedral tungstate groups (7, 13) on the low loaded samples do not reduce through intermediate structures but, as our ESCA results indicate, the reduction proceeds directly to W° . This reduction occurs only at very high temperature. Once formed, the W° rapidly sinters. Similarly, a 10% WO_3/γ -A1 $_2O_3$ sample partially reduced at 1173°K contains only W^{+6} and W° .

Our high temperature ESCA reduction experiments agree with the recent low temperature reduction experiments by Salvati, et al. (15), who also found a loading level dependence on reduction and the presence of bulk like ${\rm WO}_3$ species above a critical coverage. Our study indicates that at the temperature necessary to reduce the surface tungsten oxide, the reduced tungsten rapidly sinters

The critical coverage for non-reducibility of WO_3 on an alumina surface corresponds to approximately one WO_3 group per seven surface anion sites. Titarelli et al. report a similar WO_3 loading as the optimum concentration to suppress transformation of transitional aluminas (5). Apparently, this close-packed arrangement of isolated tetrahedral tungstate groups possesses a remarkable stability. Further, significant additions of WO_3 will result in formation of a bulk-like WO_3 species.

ACKNOWLEDGMENT

The authors wish to thank N. Dispenziere, B. DeRites, C. C. Chersich and J. Hardenbergh for their experimental assistance.

on ith i able ni-

ure G

ens 3 yl

engh lace ion, its ieand

on-; /O₃ res ot is dly and

re ehat

O₃ p-

rgh

Figure 1. Influence of reduction temperature on $\rm W_{4f}$ ESCA spectra of 10% $\rm WO_3/A1_2O_3$ precalcined at 1223°K, 16 hour in air. Sample (a) was calcined in-situ in oxygen at 773°K. Samples (b-e) were reduced 5 min, sample f, for 2 hours.

LITERATURE CITED

- (1) Tauster, S. J., Fung, S. C., Baker, R. T.K. and Horsley, J. A., Science 211, 1121 (1981).
- (2) Hogan, J. P., J. Poly. Sci. 8 (A-1), 2637 (1970).
- (3) Garten, R. L., J. Catal., 43, 18 (1970).
- (4) Thomas, R., Kerkhof, F. P. J. M., Moulijn, A. J., Medema, J. and deBeer, V. H. J., J. Catal., 61, 559 (1980).
- (5) Tittarelli, P., Iannibello, A. and Villa, P. L., J. Sol. St. Chem., 37, 95 (1981).
- (6) Thomas, R., deBeer, V.H. J. and Moulijn, J. A., Bull. Soc. Chim. Belg., <u>90</u> (12), 1349 (1981).
- (7) Salvati, L., Makovsky, J. M., Stencel, J. M., Brown, F. R. and Hercules, D. M., J. Phys. Chem., 85, 3700 (1981).
- (8) Wagner, C. D., Riggs, W. M., Davis. L. E., Moulder, J. F. and Muilenberg, G. E., "Handbook of X-Ray and Photoelectron Spectroscopy", Physical Electronics Industries (1979).
- (9) Wachs, I. E., Chersich, C. C. and Hardenbergh, J. H., to be published.
- (10) Haber, J., Stock, J. and Ungier, L., J. Sol. St. Chem., 19, 113 (1976).
- (11) Salje, E., Carley, A. F. and Roberts, M. W., J. Sol. St. Chem. 29, 237 (1979).
- (12) Knozinger, H. and Ratnasamu, P., Catal. Rev-Sci. Engr., <u>17</u> (1), 31 (1978).
- (13) Wells, A. F., Structural Inorganic Chemistry, Oxford Press, London (1962).
- (14) Wachs, I. E., Chan, S. S. and Murrell, L. L., unpublished results.